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HEAT TRANSFER IN A FILM FLOWING OVER THE SURFACE 

OF A CONVERGENT DUCT 

A. M. Lapin, L. I. Sen', and A. M. Te UDC 621.181.61:629.12 

Efficient organization of the process of thermal softening of highly-mineralized 
natural liquids such as sea water requires their heating to temperatures above 200~ with 
a nonboiling regime of operation of the heat-transfer unit. One method of realizing such 
heating is the use of film-type units, in which heat is supplied to a laminar film of liquid 
from the free phase boundary [i]. In contrast to recuperative heat exchange, in this case 
the minearalized liquid can be heated to a high temperature while the temperature of the 
boundary layer of the film is relatively low. It is this circumstance that permits non- 
boiling operation of the water heater. 

It has been established experimentally [2] that the flow of fluid in a convergent duct 
with a total convergence angle of more than 90 ~ (in contrast to flow over a vertical surface) 
results in a two-dimensional laminar nonwavy regime of film flow with a broad range of flow 
rates. This hydrodynamic feature makes it possible to more fully utilize the advantages of 
the given method of heating and accounts for the preference of using convergent-duct-film 
units [3, 4] to heat scale-forming solutions. 

Here we study the process of contact heat exchange in the condensation of pure vapor on 
a film of liquid flowing over the surface of a convergent duct. 

Formulation of the Problem. Assuming the problem to be steady and axisyn~netric, we 
write the following equations of conservation of momentum, continuity, and energy in a 
boundary-layer approximation for a thin liquid film: 

�9 0(0 ) u ~  + v-~ ou Pt OPo++ + "~ v -~- + g sin r (1)  

t Op p oy + gcos~z = O; (2) 

e) (ru) a (rv) = O; ( 3 )  a~ + ag' 
( or or) a ( o r )  

pc u ~ - l - v . - + ~  - =~y %~ �9 (4) 

Here, x is the longitudinal coordinate, directed downflow along the generatrix of the 
convergent duct; y is the transverse coordinate, directed perpendicular to the generatrix of 
the duct; the origin of the coordinates is on the inlet edge of the duct; u and v are 
respectively the x and y components of velocity; g is acceleration due to gravity; p is 
pressure; a is the angle of inclination of the duct generatrix to the horizontal; r(x) is 
the running radius of the duct; ~, p, c, %, and T are the kinematic viscosity, density, 
specific heat, thermal conductivity, and temperature of the liquid. 

The problem is solved with the following assumptions: the subjacent surface of the 
duct is thermally insulated; there is no shear stress on the liquid-vapor boundary; the 
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condensate of the vapor has no effect on flow or heat transfer. In this case, the boundary 
conditions for (1)-(4) are represented in the form 

OT/Oy = 0r u = v = 0 a t  y = O; ( 5 )  

T = Ta, aulOy = O, uahlax = ~ p = ph a t  y = h@) ;  ( 6 )  

T = To, h = h .  at x = 0~ (7) 

where h 0 is the thickness of the film at the inlet of the duct; To and T h are the tempera- 
ture of the film at the inlet and the saturation temperature at the phase boundary; Ph is 
the vapor pressure above the film surface. 

Assuming that the velocity profile in the film is self-similar 
1 

U(Z~ Y) <u> ( x ) l ( z ) ,  z = ~ /h(z ) ,  ~ l ( z )  d z =  i (8 )  
o 

.and integrating (I) and (3) through the film thickness with the use of (2) and (6), we 
,obtain the dimensionless equations [5] 

I - - ( I - - X ) 3 H  a c o s ~ ] d t t  g X ~ ( t - - X )  sin= 
. v F ~ J d X = I - -  + ~ V ~  ~ ( ! - X ? H a ; -  

VH(l L x ) =  i, 

(9 )  

(lo) 

:Here  X = who; H "= h/h.; F r  ---= <uo>2/(gho); Re = { u .  >hofv 
1 

wall); V == (u)/(uo); e ==ho/Io (Eq. (9) is valid at e << i); ~ -- d//dzlz=o; ?: y]2!z)dz; l o 
0 

length of the generatrix of the duct; <u0> is the mean velocity at the inlet. 

We express Eqs. (3) and (4) in the variables x % z: 

a oz(rV) a (ruZ)az dxdh "4- # (rhu)o~ = O, 

w = ) .  

(~ is taken at the temperature of the 

is the 

(ii) 

(12) 

When condition (i0) is satisfied, the term in parentheses in the left side of Eq. (12) 
identically equal to zero. In fact 

0 (rh <u~) .lob ~ <%>.cos  a ~ [tlV ( i  - - X ) J  ~ -  O. 

As a result, by using (Ii) we obtain 

,, �9 ~ ,  i _ (r',) + r , ~  ~ ]  = - -  ~ -  ! (~) h U T ~ ---- rh axj ~ -~ ruz-d~x ~- O. 

i s  

With allowance for (8) and (I0), we represent (12) in dimensionless form 

( 1 3 )  

Here, 0 == (T- To)/(T h --To); Pe----ho(uo)poCo/%, is the Peclet number for the inlet conditions; 
C V = pc/p0c 0 is the dimensionless value of volumetric specific heat; K = k/X 0 is the dimension- 
less thermal conductivity (C v and K depends only on 8). 

Thus, to calculate heat transfer, it is necessary to specify the form of the function 
f(z) and find the solution of Eqs. (9) and (13) with the following boundary conditions: 

0 ----- O, H = ~ at X == O; 

aOlaz  = O, I = 0 at z ~-~ O; 

0 = t,~ a l laz  = 0 at z ~ -  1 ,  
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Method of Solution. The velocity profile f(z) is approximated by a fourth-degree 
polynomial 

]~) = tz  + az 2 + bz a 2  c. d ~ .  ( 1 4 )  

Using t he  boundary c o n d i t i o n s  and t he  v a l u e s  f o r  ~ and 6, we o b t a i n  t he  system of  e q u a t i o n  

1 1 

5' 
0 0 

the solution of which gives values of the coefficients of the polynomial, expressed through 
and y, in the form 

d = ( 2 5 5 - - 4 5 ~  =f= V ' 2 5 2 0 0 ~ - - a o 9 3 7 5 + S 2 5 0 p - - 3 7 5 ~ 2 ) i i 6 ~  

a = 6 - - 5 ~ / 2  - -  4d/5, b = 4 ( ~  - -  7d/5--3)]3. 

Since Eq. (14) should be transformed into a second-degree polynomial (Poiseuille profile) 
with the values 7 = i, 2 and ~ = 3, a minus sign should be used in front of the radical in 
the expression for d. The values of X and B are determined by approximating experimental 
data from measurement of the velocity profile in a film [2]. 

The thickness of the film H(X) for Eq. (13) was calculated from Eq. (9) by the Runge- 
Kutta-Feldberg method [6]. Considering that the increase in the temperature of the boundary 
layer of liquid at the film drain at the end of the heating zone is no more than 20~ greater 
than its value at the inlet, we took the viscosity of the liquid in Eq. (9) to be equal to 
its value at T O . This allows us to deterine H(X) independently of Eq. (13). 

We solved (13) numerically by an implicit two-layer, six-point finite-difference scheme 
on a rectangular grid [7], 

�9 1 1 
�9 ' 4 + -  . e j + l  a ~ + l ~  

"~ . .~ j+1  ~j W+~- -~J  J .~ ~ j  Oj_~q- �9 - - ~ j _ ~  

Lj ~ == 2kz~ 

while for the boundary conditions we used the approximation 

O}=0,.. 0~=0 ~,. 0~=I q=N:~t, z=l). 

Here, L = CvPe ~Hf(z)/(l - X); AX and Az are respectively the mesh of the grid along X and z; 

X~ = ( i - -  t)AX; z i = ( j - -  t)Az; 0 5=O(Xi ,z i )  etc. 

With f r o z e n  c o e f f i c i e n t s  L and K, the  above d i f f e r e n c e  scheme i s  p e r f e c t l y  s t a b l e  and 
has a second-order approximation with respect to X and z. The finite-difference equation is 
solved by the trial run method. Since L and K are dependent on O at the half-integral nodes, 
they are found by linear interpolation from their values at the integral nodes. Iteration 
is used to perform such an interpolation along X. In the first approximation, the values of 
the unknown coefficients on the (i + l)-st layer are taken equal to the values of the coeffi- 
cients on the i-th layer. Then the coefficients L and K are refined from calculated values 
of temperature on the (i + l)-st layer and this refinement is continued until the desired 
accuracy is achieved. 

Discussion of Results. A comparative analysis of the results of calculation with 
constant (for the inlet conditions) and variable values of the thermophysical properties of 
the liquid [(T h - T O ) > 100~ showed that the heating deviation may reach 10%. Thus, the 
calculations must take into account the change in the properties of the solution during heating. 
Figures i and 2 show results of numerical solution of heat transfer and their generalization 
with allowance for the change in the thermophysical properties of the liquid in relation to 
temperature. Curves 1-5 in Fig. 1 correspond to the mean-flow-rate heating temperature, while 
curves 6-10 correspond to the wall temprature for To = 20~ and T h = 200~ accordingly, curves 
I, 6 were obtained for values Pe ~(~, deg) = 0.7 (30); 2, 7) 2.1 (30); 3, 8) 4.4 (45); 4, 9) 
7.5 (20); 5, i0) 12.4 (30). It is evident from the graphs that contact heat transfer in 
convergent-duct-film units makes it possible to efficiently heat a liquid with relatively low 

368 



~8 

0 

t 8  

<~ 
8, 
~8 

~6 

~4 

gz 

o,z 0,4 ~a ~8 CX/Pec o 

_ _ i : o  ...... o 

Z 4 6 8 I0 IZ ~ 

Fig. 1 Fig. 2 

wall temperatures as a result of variation of the flow-rate, geometric, and temperature 
characteristics of the process. The main limiting condition in selecting the parameters is 
the wall temperature at the end of the heating zone (where the film drains from the unit) 
which is permissible in accordance with scale formation conditions. 

1 

2 shows calculated values of the mean-flow-rate temperature (0)= [ i(z)Sdz and Figure 
8 

'wall temperature e I for different angles of inclination of the generatrix of the convergent 
duct relative to the horizontal with X = 0.8. Points 1-3 correspond to angles of inclination 
of 20, 30, and 45 ~ while the lines are drawn from the approximate expressions (8) = 1,43 exp 
[--0,5(Peg)~ 81=1,19exp(--0,38 XPee) �9 These expressions simplify the problem of selecting 
the regime and geometric characteristics of the heat exchanger. 

The applicability of the model examined here was evaluated by conducting experiments 
on a convergent-duct-film unit (~ = 45 ~ , s = 38.5 mm) with the heating of water (T o = 19~ 
by saturated vapor at atmospheric pressure. The results are shown in Fig~ 2 by points 4 for 
film Reynolds numbers of 30, 60, 90, and 120 at the inlet of the unit. The deviation of 
the theoretical values from the experimental results is due to the effect of the drain hole 
on the hydrodynamics of film flow of the liquid, which in turn stems from the relatively 
small dimensions of the convergent duct. This effect weakens with a decrease in the Reynolds 
number, and the experimental values of wall temperature and mean-flow-rate temperature 
approach their calculated values. 

The above comparison allows us to recommend the model of contact heat exchange examined 
here for the design of convergent-duct-filmheaters for highly mineralized water. 
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